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Abstract. The study described in this report is one component of a larger ef-
fort to evaluate the effectiveness of a regional syndromic surveillance reporting
network in North Central Texas that is currently housed in the offices of the
Tarrant County Public Health Department (Fort Worth, Texas). In the cur-
rent study, we aimed to assess the ability of the surveillance network to detect
an inhalational anthrax disease outbreak through temporal surveillance.

To evaluate outbreak detection, we used the ‘inject’ approach. This entailed
generating many simulated disease outbreaks, superimposing each simulated
outbreak onto real background data from the surveillance network, and then
feeding the combination of real and simulated data to a model of the syndromic
surveillance network. We examined the ability of the surveillance network at
different alarm rates to detect disease outbreaks that would infect 100, 500,
1,000, or 5,000 people.

The results suggest that the surveillance network is capable of detecting
a large proportion of inhalational anthrax outbreaks infecting as few as 100
people at false alarm rates acceptable to the surveillance team. For outbreaks
of all sizes examined, the surveillance network saved a considerable proportion
of time, or detected the outbreak faster than clinical case-finding, for many of
the simulated outbreaks. This ability of the surveillance network to provide
an early indication of an outbreak was particularly pronounced for smaller
outbreaks where clinical case-finding tended to take longer to identify the
sentinel case, and when the surveillance network was operating at a higher
alarm rate.

1. Introduction

1.1. Study Motivation. The study described in this report is one component of
a larger effort to evaluate the effectiveness of a regional syndromic surveillance re-
porting network in North Central Texas that is currently housed in the offices of
the Tarrant County Public Health Department (Fort Worth, Texas). The focus
of the larger evaluation effort is to assess the performance of the syndromic sur-
veillance network as it currently operates, to identify strengths and weaknesses of
the network, and to suggest modifications to the network that may improve per-
formance. In the study described in this report, we aim to assess the ability of the
current network to detect an inhalational anthrax disease outbreak through tem-
poral surveillance. In the remainder of this introductory section, we describe the
surveillance network (Section 1.2) and provide an overview of the contents of this
report (Section 1.3).

1.2. Overview of North Central Texas Syndromic Surveillance Network.
The North Central Texas Syndromic Surveillance Network had 30 hospitals report-
ing ED visits during the study interval from July 5th, 2004 - March 8th 2006.
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The majority of these hospitals (16, 53%) were reporting each visit in real time
using the HL7 standard over the Internet, while the remaining hospitals (14, 47%)
were reporting visits once daily by a batch file sent at midnight. The 30 hospitals
that contributed data to the regional surveillance network at the time of the study
are spread across a 200-square-mile region of North Central Texas. Most of the
reporting hospitals are located in the 16-county region that composes the North
Central Texas Council of Governments (NCTCOG) and encompasses the cities of
Dallas and Fort Worth. That region’s current population is 6,242,800 (NCTCOG
estimate).

The 30 reporting hospitals, though representing about 45 percent of the total
number of hospitals with EDs in the region (based on a list published by the Dallas-
Fort Worth Hospital Council), include most of the area’s largest, busiest facilities.
The reporting hospitals handled more than 1.1 million emergency department vis-
its in 2005, according to published reports on their Websites. (That total includes
465,000 at 12 Texas Health Resources facilities, 261,000 at eight Baylor Health Care
System facilities, 116,000 at three Cook Children’s Health Care System facilities,
115,000 at two Methodist Health System facilities, 100,000 at two Health Manage-
ment Associates facilities, 80,000 at John Peter Smith (JPS) Hospital, 25,000 at
USMD Hospital in Arlington, and 21,000 at UT Southwestern Medical Center.)

The surveillance network analyzes the data routinely 10 times each day, and in
practice generates two or three alerts each week. Every analysis occurs on three
levels, examining fluctuations in case counts for each ZIP code, each county, and
the entire region. So, although it would be unusual, it is possible for a large spike
in case counts for a single ZIP code to generate up to three alerts (one for the ZIP
code, another for the county, and a third for the region). The four largest cities in
the region alone account for more than 200 distinct ZIP codes (121 in Dallas, 58 in
Fort Worth, 19 in Arlington, and 9 in Plano).

The 38 users of the regional surveillance system work at seven different public
health agencies located throughout North Central Texas, one of which is a regional
office of the Texas Department of State Health Services. The system users are
mostly epidemiologists (74 percent), but the group also includes two health author-
ities, a medical director, a public health department director, a health educator, a
Geographic Information Systems (GIS) administrator, and three staff members in
the Southwest Center for Advanced Public Health Practice (the grant-funded unit
of Tarrant County Public Health that’s responsible for developing and maintaining
the surveillance system).

Over the study interval, the average daily number of records reported by each
hospital ranged from 14 to 216 and the average daily number of records reported
by all hospitals combined was 3,992. The surveillance network uses several appli-
cations, but the only one tested for this report is the Real-Time Outbreak Disease
Surveillance (RODS) software, a system supported with funding from the Depart-
ment of Homeland Security and developed by the University of Pittsburgh and
Carnegie Mellon University. [18]. The RODS software is used for data collection,
classification of visit records into syndromes, and statistical analysis of aggregated
records to detect disease outbreaks. When records are received, the RODS system
classifies the free-text chief complaint in each record into a syndrome using the
CoCo chief complaint classifier. The RODS system then analyzes the aggregated
data 10 times each day (midnight, 6 am, 8 am, 10 am, noon, 2 pm, 4 pm, 6 pm, 8
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pm, and 10 pm) using two temporal algorithms,1 a cumulative sum and an recursive
least-squares (RLS) algorithm. The specificity of each algorithm is controlled by
altering a threshold parameter.

When a statistical aberration is signaled, epidemiologists follow a response pro-
tocol that includes a brief initial investigation, followed by a more detailed in-
vestigation only if warranted. The initial investigation involves looking at cases
to determine if they cluster in space, examination of a line listing of the records
contributing to the alert, and looking at the pattern of alerts across syndromes.

1.3. Report Overview. In the next section of this report, we describe briefly the
methodology (Section 2) and readers are directed to the Appendix for a detailed
description (Section 7). In Section 3, we present the main findings from the report,
including the performance of the surveillance network by the alarm rate, the size
of the disease outbreak, and other surveillance network characteristics. Finally, in
Section 4, we conclude with recommendations for modifying the current network
to improve performance and by identifying areas for future evaluation.

2. Study Overview

2.1. Study Design. To evaluate outbreak detection, we used the ‘inject’ approach.
This entailed generating many simulated disease outbreaks, superimposing each
simulated outbreak onto real background data from the surveillance network, and
then feeding the combination of real and simulated data to a model of the syndromic
surveillance network. We relied on simulated outbreak data, superimposed onto real
data, for the evaluation because data from real outbreaks, especially those due to
inhalational anthrax, are available in neither the form nor the quantity needed for
a rigorous evaluation.

The simulated outbreaks reflected the additional emergency department (ED)
visits that we would expect to occur following an aerosol release of anthrax spores.
To simulate an outbreak, we set the number of individuals infected and then sim-
ulated disease progression and ED visits for each infected person. A simulated ED
visit included a time and a syndrome assigned to the visit. The baseline data were
records of ED visits obtained from the surveillance network. We used the CoCo
chief-complaint classifier from RODS to categorize the baseline records into syn-
dromes and statistical algorithms from RODS to analyze time-series of aggregated
baseline and simulated records [18]. In addition to assessing outbreak detection
through syndromic surveillance, we also simulated the time to clinical diagnosis of
the first case in each outbreak and used these data to compare syndromic surveil-
lance to clinical case-finding.

In the study, we examined the ability of the surveillance network at different
alarm rates to detect disease outbreaks that would infect 100, 500, 1,000, or 5,000
people. Before presenting the results, we provide some context for interpreting the
alarm rate (Section 2.2) and the number infected (Section 2.3).

2.2. Interpreting the Alarm Rate. The alarm rate is the frequency at which
the surveillance network alarms in the absence of a disease outbreak; this can
also be expressed as the background alarm rate. In general, higher alarm rates
result in better detection performance (i.e., higher sensitivity and faster time to

1A temporal algorithm is used to analyze counts or rates recorded at consecutive points in
time. Information on the spatial location of the data is not used by a temporal algorithm.
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detection). The alarm rate can be changed by adjusting the threshold parameter of
the statistical method that is used to detect outbreaks. In the statistical literature,
the alarm rate is defined as the complement of specificity, which is defined as the
probability of not sounding an alarm when there is in reality no outbreak occurring.
The number of alarms per a unit of time, such as a week, month, or year is a more
intuitive measure of the alarm rate than specificity.

There are at least four important characteristics of the alarm rate that should be
kept in mind when interpreting detection performance. First, an alarm indicates
a statistical aberration in the data and not necessarily a true disease outbreak.
Alarms that occur in the absence of any known disease outbreak may be due to
unexpected changes in data reporting from hospitals, natural variation in the data,
or true disease outbreaks that are not recognized by public health. Second, we as-
sumed for this study, that all alarms in the baseline data (i.e., alarms not occurring
during a simulated outbreak) were false alarms. This is a reasonable assumption
if one is interested in detecting only outbreaks due to bioterrorism, but it may
lead to conservative estimates of specificity if one is interested in using the network
to detect other types of outbreaks as well. Third, different alarm rates may be
acceptable in different surveillance settings. For example, in a local or regional
surveillance network, such as the North Central Texas network, higher alarm rates
may be acceptable if epidemiologists can rule-out alarms with a minimal amount of
effort. Finally, while specificity is not affected greatly by the frequency of analysis,
the alarm rate per unit of time is influenced strongly by the frequency of analysis.
For example, a specificity of 0.9 translates into 7 alarms per week when the data
are analyzed ten times each day and less than 1 alarm per week when the data are
analyzed once each day.

2.3. Interpreting the Number Infected. The number infected is the total num-
ber of people that are infected and develop symptoms following a simulated expo-
sure. In general, only a proportion of infected individuals will visit an emergency
department during the course of their illness. Moreover, these visits will occur over
time and symptomatic individuals will tend to visit different hospitals. Finally,
when individuals do visit a hospital, they will likely be assigned a variety of di-
agnoses, especially in the early stages of disease, when symptoms of inhalational
anthrax are non-specific.

The result is that the number of visits ‘seen’ by the surveillance network is
smaller than the number infected and those visits are spread out over many days.
For example, in a simulated outbreak where 1,000 people were infected, these sim-
ulated individuals made approximately 880 visits to emergency departments with
270 visits before the peak of the epidemic curve, which occurred, on average, 10
days following exposure. Of the visits that occurred before the peak of the epidemic
curve, approximately 192 were coded as being for a respiratory condition. So, the
average number of additional respiratory visits that were ‘seen’ by the surveillance
network was approximately 19 each day, superimposed on an average baseline inci-
dence of 413 respiratory visits each day for an additional ‘signal’ of 4.6% over the
baseline.

A reasonable question is when the increase in incidence due to an outbreak would
be noticed by emergency department staff (note this is a different question than
whether a sentinel case would be diagnosed by an astute clinician). Continuing
with the numbers used above, if there were an additional 19 cases of respiratory
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Figure 1. The Receiver Operating Characteristics (ROC) curve for

outbreak detection with 1,000 people infected. Note that more outbreaks

are detected (i.e., the sensitivity improves) as the alarm rate increases.

disease seen on a given day, and these cases were distributed uniformly across the
30 hospitals in the surveillance network, then we would expect each emergency
department to ‘see’ an additional 0.63 cases per day spread across the various staff
working in the emergency department.2 It is difficult to say with certainty whether
this additional number of cases would be noted to be unusual, but these numbers
make clear that an outbreak infecting 1,000 people is likely to result in a relatively
small number of additional cases at any one hospital.

3. Main Results

In our analysis, we considered multiple clinical presentations that might occur
following an aerosol anthrax release and we also considered two different statistical
algorithms that might be used in the surveillance system. We present the results for

2In reality, the distribution will not always be uniform. As well, the average of 0.63 cases per
hospital can be interpreted as 1 or 0 cases per hospital.
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1 - Specificity (Alarms per Week)
Required to Detect Proportion

Number
Infected 50% 80% 95%

100 0.023 (1.6) 0.060 (4.2) 0.117 (8.2)
500 0.022 (1.5) 0.052 (3.6) 0.107 (7.5)

1,000 0.016 (1.1) 0.042 (2.9) 0.087 (6.1)
5,000 0.002 (0.2) 0.007 (0.5) 0.017 (1.2)

Table 1. The specificity, or alarms per week, required to detect 50%,

80%, and 95% of outbreaks by four different numbers infected. Note

that the majority of outbreaks of all sizes examined are detected at

reasonable alarm rates, but detection of a large proportion of smaller

outbreaks requires a high alarm rate.

only the respiratory syndrome and the statistical algorithm (recursive least-squares
or RLS) that had the best detection performance.

3.1. Outbreak Detection by Alarm Rate. A greater proportion of outbreaks
were detected when more alarms were tolerated. Figure 1, a conditional Receiver
Operating Characteristics (ROC) curve, demonstrates this relationship for the sit-
uation where 1,000 people were infected. The trade-off between alarm rate and the
proportion of outbreaks detected (or sensitivity) is illustrated for selected detection
proportions in Table 1. To detect half of the simulated outbreaks, alarm rates of
between 1.6 per week (for 100 people infected) and 0.2 per week (for 5,000 people
infected) were required. These alarm rates are probably acceptable in most settings,
even for the smaller size outbreaks. Higher alarm rates were required, however, to
ensure detection of a large proportion of the simulated outbreaks. For an outbreak
that infected 100 people, and alarm rate of 8.2 per week (out of 70 analyses per
week) was required to detect 95% of outbreaks.3 With an outbreak that infected
5,000 people, the alarm rate required to detect 95% of outbreaks was still relatively
low, 1.2 per week.

3.2. Outbreak Detection by Number Infected. As one would expect intu-
itively, detection performance improved as the number of individuals infected in-
creased. Figure 2 shows the slight improvement in accuracy as the number of people
infected increased from 100 to 1,000 and the more marked improvement between
1,000 infected and 5,000 infected. Perfect detection would result in an ROC curve
that rises instantly to a sensitivity of 1 at 0 alarms per week. One approach to
quantifying the relative performance for different sizes of outbreaks is to calculate
the area under the ROC curve for each size of outbreak. Perfect detection would
result in an area under the curve (AUC) of 0.2. Table 2 (see page 11) displays
the AUC for each line in Figure 2. Accuracy improves, or the AUC increases,

3This alarm rate is determined, in part, by the number of analyses performed each day. See
Section 3.4 for a discussion of how fewer analyses per day will lower the alarm rate
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Figure 2. The Receiver Operating Characteristics (ROC) curves for

outbreak detection with different numbers of people infected. Note that

more outbreaks are detected (i.e., the sensitivity improves) at a given

alarm rate as the number infected increases.

as the number of people infected increases, and detection performance with the
surveillance network is nearly perfect for an outbreak that infects 5,000 people.

Another useful measurement of detection performance is the comparison be-
tween outbreak detection through the surveillance network and outbreak detection
through clinical case-finding. In other words, comparing the initial alarm from the
surveillance network to the first case diagnosed through the routine use of blood
culture4. As with detection through syndromic surveillance, the simulated time to
outbreak detection through clinical case-finding decreased as the number of infected
individuals increased. Figure 3 demonstrates this relationship, and the median time
until outbreak detection through clinical case-finding decreased from 7.5 days when
100 people were infected to 4.6 days when 5,000 people were infected.

4See the Appendix (Section 7) for a description of the model used to simulated clinical case-
finding
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Figure 3. Boxplots showing the distribution of the simulated time

to clinical detection of outbreaks through routine blood culture testing.

The horizontal line is the median value, the box is the interquartile

range, the whiskers are the range of the data and the the circles are

outlying points. Note that the median time to clinical detection of an

outbreak decreases as the number infected increases.

To compare detection through syndromic surveillance and clinical case-finding
directly, we plotted the 3-dimensional analogue to the ROC curve, the Timeliness
Receiver Operating Characteristics (TROC) surface, and calculated the volume
under this surface, which is analogous to the AUC. The third axis in the TROC
plot (Figure 4) measures the cumulative proportion of time saved due to outbreak
detection through the surveillance network as compared to clinical case-finding. For
example, if clinical case-finding detected an outbreak 5 days following release of
spores and syndromic surveillance detected the same outbreak 4 days after release,
surveillance would save 20% of the time. The TROC plot displays the proportion
of outbreaks detected (sensitivity or TP, on the z-axis) with a given proportion of
time saved (1 - proportion of time, on the x-axis) over a range of alarm rates (FP,
on the y-axis). The top-right corner in Figure 4 demonstrates, for example, that
some time was saved (i.e., 1 - Proportion of time saved was ≤ 1.0) in over 80% of
outbreaks when 1 - specificity (or FP) rose to 0.2.

Another perspective on the proportion of time saved is to take 2-dimensional
‘slices’ through the TROC surface at set alarm rates. Figure 5 demonstrates 3 such
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Figure 4. The Timeliness Receiver Operating Characteristics Surface

for 1,000 people infected. The surface shows, at different alarm rates

(FP) the frequency (TP) with which a proportion of time was saved

through surveillance as compared to outbreak detection through clinical

case-finding. The top-right corner demonstrates, for example, that some

time was saved (i.e., 1 - Proportion of time saved was ≤ 1.0) in over 80%

of outbreaks when 1 - specificity (or FP) rose to 0.2. See Figure 5 for

2-dimensional slices through the surface at different alarm rates.
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Figure 5. 2-Dimensional ‘slices’ through the the Timeliness Re-

ceiver Operating Characteristics Surface shown in Figure 4. These 2-

Dimensional slices demonstrate the proportion of outbreaks (Sensitivity)

for which a given amount of time was saved through syndromic surveil-

lance relative to clinical case-finding (1 - Proportion of Time Saved) at

3 alarm rates. The point highlighted with the red box indicates that

when operating at an alarm rate of 0.10, surveillance saved at least 50%

of the time (i.e., 1 - Proportion of Time saved, on the horizontal axis)

in nearly half of the simulated outbreaks (i.e., Sensitivity, on the vertical

axis).

slices at alarm rates of 0.01, 0.05, and 0.10. From this perspective, it is clear that
outbreak detection through syndromic surveillance saved time over clinical case-
finding in fewer than 10% of outbreaks when the surveillance system was operating
at an alarm rate of 0.01. When the alarm rate was set higher, to 0.10 however, the
surveillance system saved more time as compared to clinical case-finding. The point
highlighted with the red box in Figure 5 indicates that when operating at an alarm
rate of 0.10, surveillance saved at least 50% of the time between outbreak onset
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Area Volume
Under Under Timeliness

Infected Curve Accuracy Surface Accuracy

100 0.164 0.82 0.0934 0.47
500 0.166 0.83 0.0831 0.42

1,000 0.173 0.86 0.0794 0.40
5,000 0.195 0.97 0.0709 0.35

Table 2. The area under the Receiver Operating Characteristics

(ROC) curve and the volume under the Timeliness Receiver Operat-

ing Characteristics Surface. The area, with a maximum of 0.2 in this

case, indicates the overall accuracy of the system in detecting outbreaks

for each level in the range of number of people infected. Note that accu-

racy increases as the number infected increases. The volume, also with

a maximum of 0.2 in this case, indicates the accuracy and the propor-

tion of the overall time that is saved by detection through syndromic

surveillance as compared to clinical detection. Note the the volume

decreases as the number infected increases, mainly because detection

through clinical case-finding occurs faster when more people are infected.

and outbreak detection through clinical case-finding in nearly half of the simulated
outbreaks.

Perhaps more importantly than interpreting the surface directly, is measuring
the volume under the surface (VUS). The VUS is a convenient summary measure
for comparing the overall detection accuracy and timeliness of surveillance relative
to clinical case-finding.

Table 2 demonstrates that even though the detection accuracy (i.e., AUC) in-
creases as the size of the outbreaks increases, the VUS is lower for larger outbreaks
than for small outbreaks. At first this result may seem counterintuitive. One might
expect, intuitively, that the accuracy of detection through syndromic surveillance
would increase and the time to detection would decrease as the size of the outbreak
increases. This is indeed what we observed in the current study when timeliness
was measured as the delay from the onset of the outbreak until detection of the out-
break. The VUS, however, measures the timeliness of outbreak detection through
syndromic surveillance relative to detection through clinical case-finding. As the
size of the outbreak decreased, or the number of infected people decreased, the time
until outbreak detection increased for both syndromic surveillance and clinical case-
finding, but the increase occured more quickly for clinical case-finding than it did
for syndromic surveillance. The net result was that syndromic surveillance saved
more time, signalling earlier in the outbreak relative to clinical case-finding, when
the outbreak was smaller in size. To some extent, this finding may be influenced by
assumptions made in developing our simulation model (see Section 7), but previous
work suggests that this finding is not sensitive to modeling assumptions [4, 5].
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Area Volume
Under Under Timeliness

Infected Curve Accuracy Surface Accuracy

50% Batch and 50% Real-Time Reporting
100 0.164 0.82 0.0934 0.47
500 0.166 0.83 0.0831 0.42

1,000 0.173 0.86 0.0794 0.40
5,000 0.195 0.97 0.0709 0.35

100% Real-Time Reporting
100 0.156 0.78 0.0880 0.44
500 0.166 0.83 0.0781 0.39

1,000 0.180 0.90 0.0750 0.38
5,000 0.199 0.99 0.0665 0.33

Table 3. Measures of accuracy and timeliness by outbreak size when

using the current mix of batch and real-time reporting as compared to

all real-time reporting. Note that timeliness was always better with

mixed reporting, while accuracy was higher with real-time reporting at

higher numbers infected and lower at lower numbers infected. See the

text for further discussion.

3.3. Detection by Reporting Delay. An important practical consideration for
the surveillance network is whether real-time reporting will result in improved out-
break detection performance over batch reporting of records from emergency de-
partments. Batch reporting is easier to implement in many settings, but if this
comes at a cost of worse outbreak detection when compared to real-time report-
ing, then the additional effort required to implement real-time reporting may be
justified.

Our results in this area are mixed, and the reason for these mixed results is
not immediately clear (Table 3). Accuracy of detection, as measured by the area
under the ROC curve, tended to improve with real-time reporting, but only for
larger outbreaks. For smaller outbreaks, the current mix of batch and real-time
reporting had greater accuracy than real-time reporting. The results for timeliness,
as measured by the volume on the TROC surface, were consistent, with faster
detection using the current mix of batch and real-time reporting as compared to
all real-time reporting. Further investigation is required to understand the reasons
for these findings.

3.4. Influence of Analysis Frequency. Another important practical consider-
ation is how frequently the data should be analyzed. The intuition behind more
frequent analyses is that this approach may lead to more rapid outbreak detection.
The drawback, however, is that analyses performed in rapid succession may provide
little new information but they can increase the alarm rate.

In the surveillance network, the data are analyzed 10 times each day. As we
noted earlier in this report, multiple analyses each day do not affect the specificity
of the system per analysis, but they do tend to increase the alarm rate of the system
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Figure 6. The Receiver Operating Characteristics (ROC) Curve for

1,000 people infected and for random alarms at 10 analyses per day and 1

analysis per day. Note that when analyses are conducted ten times each

day, a random alarm actually results in better detection performance

than the surveillance system. When only one analysis is conducted each

day, however, the performance of the random alarm worsens as shown.

per unit of time. As Figure 6 shows, a random analysis, at the same frequency, 10
times each day, has higher accuracy than the current system. When the number
of analyses is decreased to once each day, then the performance of random analysis
degrades as shown in the Figure. While it is not shown in Figure 6, it is likely
that the surveillance system would outperform a random analysis if the data were
analyzed once each day.

When plotting the accuracy of any detection method (e.g., a diagnostic test)
using a ROC curve, the traditional interpretation is that a random analysis would
produce a diagonal curve if both axes of the graph extended from 0 to 1. It is
important, therefore, to show how a random analysis results in a different curve
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for the surveillance system under evaluation. The random analysis curve in a tra-
ditional setting is based on the understanding that 1 statistical test is performed
for each true event. In the current study, the outbreaks were on average 10 days in
duration, and 10 statistical tests were applied each day, so a total of 100 statistical
tests were performed for each true event, or outbreak. Increasing the number of
tests performed during each outbreak increases the probability, at a given alarm
rate, that a random alarm will detect an outbreak.5

A careful analysis to determine the optimal number of analyses each day is
beyond the scope of this report. Conducting 1 analysis each day as opposed to
10, however, is likely to decrease timeliness, but the increased time to detection
may be outweighed by the decreased alarm rate. We caution against drawing any
strong conclusions from these observations about the frequency of analysis in other
settings (e.g., for other types of outbreaks), and generalization to other types of
analyses (e.g., space-time analysis) is not warranted. Nevertheless, the frequency
of routine analysis within the surveillance network is an important topic for future
investigation.

4. Conclusions and Recommendations

The results from our simulation study suggest that the regional syndromic sur-
veillance reporting network in North Central Texas is capable of detecting a large
proportion of inhalational anthrax outbreaks infecting as few as 100 people at false
alarm rates acceptable to the surveillance team. For outbreaks of all sizes exam-
ined, the surveillance network saved a considerable proportion of time, or detected
the outbreak faster, than clinical case-finding for many of the simulated outbreaks.
This ability of the surveillance network to provide an early indication of an out-
break was particularly pronounced for smaller outbreaks, where clinical case-finding
tended to take longer to identify the sentinel case. In the following sections, we pro-
vide specific recommendations for the configuration of the network and for future
evaluation.

4.1. Surveillance Network Configuration. In general, our results suggest that
the surveillance network is currently operating in a manner that is likely to detect
disease outbreaks similar to a simulated inhalational anthrax outbreak. We there-
fore do not suggest any major changes to the current configurations, but there are
some minor changes that may streamline operations and improve performance.

First, we noted that the RLS algorithm outperformed the CUSUM algorithm in
all inhalational anthrax scenarios examined. In other words, the RLS algorithm
always had higher sensitivity at a given alarm rate for a simulated inhalational
anthrax outbreak than the CUSUM algorithm and always detected the anthrax
outbreaks before the CUSUM algorithm. This finding may be specific to the shape
of the epidemic curve for inhalational anthrax and the baseline incidence of respira-
tory syndromes, but it suggests that greater weight should be given to the results of
surveillance alarms using the RLS algorithm for these types of data. For example,
when monitoring respiratory syndromes with a high baseline incidence, it would be
reasonable for an analyst to conclude that a CUSUM alarm in the absence of an
RLS alarm does not provide strong evidence for a true outbreak. In contrast, an

5The sensitivity, Se, of a random analysis at a set specificity, Sp, is calculated from the number
of tests performed in an outbreak interval, nTests, as Se = 1− SpnTests.
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RLS alarm in the absence of a CUSUM alarm is more likely to indicate a true out-
break. Care should be taken, however, in applying this interpretation to situations
where the incidence of cases is low or where the outbreak signal is likely to rise
slowly. For example, in detecting sporadic gastrointestinal outbreaks, where the
total number of counts may be low relative to the baseline, the CUSUM algorithm
may have performance that is superior to the RLS algorithm.

Second, we are not able to say definitively, for the purpose of rapid outbreak
detection, whether additional effort should be expended to increase the proportion
of hospitals reporting in real time as opposed to batch. There may be other reasons
for increasing the proportion of hospitals reporting in real time, such as contributing
to ‘situational awareness’, and we are not commenting on the importance of real-
time reporting for purposes other than outbreak detection. We do suggest, however,
that the current analysis protocol for batch data in the RODS system be examined
carefully to confirm our findings that analysis of batch data may, paradoxically,
result in higher accuracy and faster detection than analysis of real-time data in some
settings. If our findings are verified, modification to the batch analysis protocol may
be warranted.

Third, we suggest that consideration be given to the number of analyses con-
ducted each day. Frequent, routine analyses may increase the chance of false pos-
itive alarms and add little additional information. The alarm rates described in
this report, while acceptable to surveillance analysts in the network, could be cut
in half by decreasing the number of analyses each day from 10 to 5, or decreased
by an order of magnitude by decreasing the number of analyses each day to 1. This
would not, of course, preclude ad hoc inspection of the data as required, it would
decrease only the number of routine analyses.

4.2. Future Evaluation Studies. The results from our evaluation study suggest a
number of areas for future inquiry. Most notably, we examined statistical outbreak
detection only, and it is important to understand the implications of our findings
in the context of the broader function of the surveillance network. This would
include the evaluation of the influence of alarm rate and other factors on protocols
for investigating outbreaks and on the use of information from the system to inform
public health decision-making.

There are also many aspects of outbreak detection that require additional eval-
uation. Some possible areas of future study include:

• Conducting follow-on evaluation to address specific issues raised in the cur-
rent study, including the influence on outbreak detection of: the propor-
tion of all hospitals included in the surveillance network, the proportion of
hospitals reporting in real time and in batch mode, and the frequency of
analysis.

• Analyzing the performance of other applications used in North Central
Texas in addition to RODS (e.g., ESSENCE, RedBat and BioSense).

• Addressing the interplay of different syndromes, space-time analytic meth-
ods, and statistical methods that allow concurrent analysis of multiple syn-
dromes (all valuable follow-on work because our study examined temporal
surveillance only).

• Examining methods of making the response protocols more efficient and
effective. (This might mean, for example, determining whether it’s possi-
ble to automate some of the steps taken currently by surveillance analysts



16 DAVID BUCKERIDGE, AMAN VERMA, AND DAVID SIEGRIST

to rule out alarms. If such automation is possible, then it may be pos-
sible to lower alarm rates while maintaining high levels of sensitivity and
timeliness.)
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7. Appendix - Detailed Methodology

7.1. Study Design. To evaluate outbreak detection by the surveillance network,
we used the ‘inject’ approach. This entailed generating many simulated disease
outbreaks, superimposing each simulated outbreak onto real baseline data from the
surveillance network, and then feeding the combination of real and simulated data
to a model of the syndromic surveillance network.

For baseline data, we acquired from the regional syndromic surveillance reporting
network in North Central Texas records of visits to emergency departments (ED)
between July 2004 and March 2006. Each record contained the date and time of
admission to the ED, the name of the ED, and a free-text chief complaint. We
used the CoCo chief-complaint classifier, as supplied by the RODS lab along with
a training file, to classify each record in the baseline data into a single syndrome.

For the simulated records, we examined eight scenarios defined by the number
infected (100, 500, 1,000, and 5,000) and the nature of data acquisition (real-time
reporting versus a mix of real-time and batch reporting). For each scenario, we
conducted 1,000 simulations, resulting in 4,000 simulated outbreaks in total. We
superimposed each outbreak in turn onto baseline data from the year 2005 with
the outbreak beginning on a randomly selected date and at a randomly selected
time, and we applied two temporal outbreak detection algorithms from the RODS
system to the time-series formed by aggregating the baseline and simulated records
across the entire surveillance region.

Finally, we calculated the performance of the algorithms and we compared the
performance of syndromic surveillance to clinical case-finding through routine blood
culture. The main outcomes were the sensitivity, specificity, and timeliness of
outbreak detection through syndromic surveillance, and the detection benefit of
syndromic surveillance over clinical case-finding.

In the following sections we describe our methods for generating outbreak signals
(Section 7.2), our simulation model (Section 7.3), our approach to combining sim-
ulated and baseline data (Section 7.4), the outbreak detection algorithm we used
(Section 7.5), and the metrics we used to evaluate outbreak detection performance
(Section 7.6).

7.2. Generation of Simulated Signals. To generate the simulated outbreaks for
each scenario, we first specified manually the number infected. We then generated a
disease path for each infected individual, the timing of visits to EDs for symptomatic
individuals, the syndrome assigned at each visit, and the occurrence, timing and
results of blood culture testing. Table 4 shows the parameter values used in the
simulation study. The same random number generator with the same seed value
was used for each scenario. We used a combined multiple recursive generator as
proposed and implemented by L’Ecuyer with the default initial seed [11]. This
sampling strategy was intended to improve the efficiency of the simulation and
reduce the variance of the output variables [10]. The net result is to facilitate
comparison of the results across the different scenarios.

7.3. Simulation Model. The simulation model comprises two components: dis-
ease and health-care utilization. The first component, disease, simulates how
infected individuals progress through distinct disease states. The health-care uti-
lization component then identifies when symptomatic individuals seek care, their
presenting syndromes, and the timing and results of blood-culture testing. In this
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Incubation Prodromal Fulminant
1.0 1.0

Figure 7. The disease model for inhalational anthrax. Infected in-

dividuals all pass through three disease states. In the incubation state

individuals have no symptoms. In the prodromal state individuals expe-

rience an influenza-like illness. Finally, in the fulminant state individuals

experience severe symptoms, such as shock. The holding-time function

in each state is a lognormal distribution with parameters shown in Table

4.

section, we describe in detail the simulation model components including the values
used to parameterize each component for the study.

7.3.1. Disease. The disease model takes as input the number of infected individ-
uals and returns a disease path for each individual. The disease path describes
the amount of time spent in each discrete disease state. We used a semi-Markov
process to model progression of an individual with inhalational anthrax through
three disease states: incubation, prodromal, and fulminant (Figure 7) [20].

The definition of the semi-Markov process requires identification of the states,
including the holding-time functions, and specification of the transition probabilities
between states. The initial state in the model was incubation, followed by certain
transition to the prodromal state, and then the fulminant state. For holding-
time functions, we used the lognormal distribution, which appears to describe the
duration of incubation for many diseases [15, 17], including inhalation anthrax [3,
13]. The values used to parameterize the holding-time functions are taken from
observational studies of human exposure [3, 13] and other modeling studies [19, 20],
and are shown in Table 4.

7.3.2. Health-Care Utilization. The health-care utilization model takes as input a
set of disease paths and for each path performs three tasks: (1) it identifies if and
when individuals seek care in each disease state, (2) it determines the presenting
syndrome for individuals that seek care, and (3) it identifies the timing and results
of blood culture testing once care is sought.

We used a semi-Markov process to model health-care utilization (Figure 8). A
separate process was used to describe health-care utilization in each of the pro-
dromal and fulminant disease states. Both processes had the same states and
transitions (Figure 8), but some values for holding-time functions and transition
probabilities differed between the disease states (i.e., those states with a s subscript
in Figure 8) and the values used in the simulation study are shown in Table 4.

The transition from ‘No Visit’ to ‘Visit’ represents an individual seeking care at
an emergency department. The probability of this transition occurring (αs) differs
between disease states (s). We set the probability of a visit in the prodromal disease
state (αp), to 0.09 because cross-sectional surveys suggest that this proportion of
individuals visit an ED at some point during an episode of upper respiratory tract
illness [12, 14]. For the fulminant disease state (αf ), we estimated the probability
of seeking care as 80% given the severity of the symptoms in that state.
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No VisitNo Visit VisitVisit IsolationGrowthGrowth
αs βs γ

Figure 8. The health-care utilization model. When individuals en-

ter the prodromal or fulminant disease state, they enter the health-care

utilization model. The probability of making a visit (αs) varies by dis-

ease state (Table 4). The probability of a positive blood culture (βs)

is the product of the probability of ordering a test (which varies by

disease state) and the sensitivity of the test (which does not vary by

disease state). The probability of isolating the organism does not vary

by disease state. The holding-time function for the ‘No Visit’ state is

triangular, with a duration equivalent to the length of the disease state.

Holding-time functions for the ‘Visit’ and ‘Growth’ states are exponen-

tial, with parameters shown in Table 4.

The transition from ‘Visit’ to ‘Growth’ represents an individual having a positive
blood culture test after making a visit. The probability of this transition (βs) is the
product of the probability of performing a blood culture test (β1

s ) and the sensitivity
of the test (β2, i.e., βs = β1

s × β2). The probability of performing a test in the
prodromal state (β1

p), was estimated from the National Ambulatory Health Care
Survey as approximately 0.1 [6]. In the fulminant state, we used the same source to
estimate the probability of a blood culture test (β1

f ) as 0.5. We relied on published
studies of blood-culture testing to estimate the sensitivity of blood-culture testing
in both symptomatic disease states (β2) as 0.8 [16].

The final transition, from ‘Growth’ to ‘Isolation’, represents the decision to iso-
late the organism from a blood culture bottle growing gram-positive rods. We relied
on data from a recent survey to estimate this value (γ) as 0.9 [2].

In addition to a transition probability, each of the first three states in the health-
care utilization model also requires a holding-time function. The holding-time func-
tion for the ‘No Visit’ state models the distribution of time to seeking care, given
that care is sought. We used a right triangular distribution fit to the time spent in
the disease state. So, for example, if an individual had a prodromal disease state
duration of 10 days, then the probability of seeking care at the instant of entering
the disease state would be zero, and the probability of seeking care would increase
linearly to 0.2 at ten days, with a mean time to seeking care of 6.7 days.6 This
approach to modeling visits effectively limits individuals to a single visit in each
disease state. The selection of a triangular distribution reflects the lack of pub-
lished evidence about the timing of health-care utilization following the onset of
symptoms.

The holding time function for ‘Visit’ reflects the distribution of times until growth
occurs given that the test is positive. The holding time function for ‘Growth’ is the
distribution of times until the organism is isolated given that a decision is made to

6These values result from the properties of the triangular distribution, which is defined by
three parameters: a, b, and c. In a right triangular distribution, b = c. The maximum point
density is 2 / (b - a) and the mean is (a + b + c) / 3.
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isolate a specific organism. We modeled both these holding times as exponential
with means obtained from published reviews of blood-culture testing [1, 8].

Finally, for individuals that made a health care visit, we simulated the syndrome
assigned to the individual using probabilities that reflect the distribution of clinical
presentations for inhalational anthrax reported in the literature [7–9]. The proba-
bility of being assigned a specific syndrome in the prodromal and fulminant disease
states is shown in Table 4.

7.4. Combination of Simulated Data with Baseline Data. We first defined
a 365 day interval on the baseline data from January 1, 2005 until December 31,
2005 as possible starting dates for a simulated outbreak. We then selected randomly
1,000 dates and times for injecting outbreaks. For simplicity, we will describe these
instances of exposure as a ‘date’, but we sampled a random date and time for each
exposure.

To inject the simulated outbreak signals for a scenario, we used the follow-
ing method. Each scenario had set of simulated outbreaks, O = {O1, . . . , O1000},
and the set of randomly ordered dates, D = {D1, . . . , D1000}. For outbreak j,
j ∈ {1, . . . , 1000}, we selected Oj and Dj . The outbreak Oj is a time series of
counts, lasting n days and representing the visits for respiratory, neurological, and
gastrointestinal syndromes from the day of the simulated release until the day of
the peak incidence of cases.

The outbreaks series Oj is an ordered set of values, Oj = {o(1), . . . , o(n)}, which
we define to run from Dj until Dj + n − 1, or Oj = {o(Dj), . . . , o(Dj + n − 1)}.
The background time series is also an ordered set of values, B = {b(1), . . . , b(m)}.
For inject j, we extract a subset of the background time series Bj = {b(Dj −
g), . . . , b(Dj), . . . , b(Dj + n− 1)}, where g is the length of the lead-in gap, which is
the amount of time in the inject series before the beginning of the outbreak. We
then define the inject series Ij = {i(Dj − g), . . . , i(Dj + n− 1)}, with the entries in
the series defined as,

i(k) =
{

b(k) + o(k) if k ≥ Dj and k < Dj + n
b(k) otherwise

In other words, the inject series is formed by adding the values of the outbreak
series to the values of the background series, after aligning the two series so that
the first day of the outbreak series is added to day Dj in the background series.
We then applied the outbreak detection algorithms to each day in the inject series
to generate alarm values from day Dj − g to day Dj + n − 1. The lead-in gap
g = 180 days was used, which corresponds to the amount of historical data used by
the detection algorithms.

7.5. Outbreak Detection. For outbreak detection through syndromic surveil-
lance, we used software implementations of the RLS and Cusum algorithms pro-
vided to us by algorithm developers at the RODS laboratory. We were able to
adjust the specificity or false alarm rate of each algorithm by altering an alarm
threshold parameter. An algorithm was said to have detected an outbreak if the
algorithm output a value over its threshold at any point between the onset of expo-
sure and the peak daily incidence of visits during the outbreak (see Section 7.6 for a
formal definition of an alarm). The time until outbreak detection for an algorithm
was the interval between exposure and the first alarm declared.
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As is the current policy in the surveillance network, we applied each algorithm to
the combined baseline and outbreak data 10 times each day. The first analysis each
day occurred at 6 a.m. and then analyses were conducted once every 2 hours until
midnight. To estimate the effect of reporting on outbreak detection, we conducted
each analysis using 2 models of record reporting as described in Section 7.5.1.

For outbreak detection through clinical case-finding, we took the minimum time
to clinical diagnosis through blood-culture in each simulation run as the time until
detection.

7.5.1. Models of Real-Time and Batch Reporting. In modeling the arrival of records
for analysis by the surveillance network, we used only the time-stamp for the ad-
mission of the patient into the emergency department. For real-time reporting, we
assumed that records were available instantaneously for analysis at the time of ad-
mission. We ignored, therefore, any delay in reporting and any latency in network
transmission. For batch reporting, we assumed that records for a 24-hour inter-
val ending at midnight were available instantaneously for analysis at midnight. In
practice, however, the first analysis to incorporate batch records was the analysis
conducted at 6 a.m.

For each simulated outbreak we conducted 2 sets of analyses. For the first set of
analyses, all records were available for analysis in real time. For the second set of
analyses, approximately half of the records were available for analysis in real time
and the remaining batch-reported records were available for analysis as a group
according to the batch reporting protocol described in the previous paragraph.
The first data set was intended to reflect the best possible reporting scenario and
the second data set was intended to reflect the current reporting situation for the
surveillance network.

7.6. Evaluation of Outbreak Detection Performance. To measure outbreak
detection performance, we calculated, over a range of algorithm thresholds (h) for
all surveillance system / detection algorithm pairings, false alarm rate, sensitivity,
timeliness, and detection benefit. We provide a precise definition of each metric
below, and the definitions rely on the concept of the alarm value A for an algorithm
at a given threshold h for each interval analyzed j. The alarm value is a binary
measure, or

A(h)j =
{

1 if S(h, j) > h
0 otherwise.

where S(h, j) is some value returned from the algorithm after analyzing the
interval j with threshold h.

7.6.1. Specificity. Specificity is the probability of no alarm given that there is no
outbreak, or

Specificity = P (A|O) =
n(A,O)
n(O)

,

where n(O) is the number of intervals (e.g., days) in the baseline data and n(A, O)
is the number of alarms when the algorithm is applied to the test data without any
superimposed outbreaks. We calculated specificity at a decision threshold h as:
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Sp(h) =
1
m

m∑

j=1

A(h)j ,

where there were m intervals in the baseline data. Note that specificity was
calculated using only non-outbreak, or baseline, data. To determine specificity, we
applied an algorithm at a given threshold to a time-series of data aggregated across
the entire study region. We assumed, therefore, that any alarm in the baseline data
was a false alarm in the sense that it did not reflect a true outbreak of inhalational
anthrax.

7.6.2. Sensitivity. Sensitivity is the probability of an alarm given an outbreak, or

Sensitivity = P (A|O) =
n(A,O)
n(O)

,

where n(O) is the number of outbreaks and n(A,O) is the number of outbreaks
during which an alarm was sounded. We calculate sensitivity at a decision threshold
h over some number n of test data sets i as:

Se(h) =
1
n

n∑

i=1

min(1,

mi∑

j=1

A(h)ij),

where there are mi intervals in test data set i. Note that sensitivity measures
only whether an alarm occurred at any point during an outbreak and the timing of
an alarm within an outbreak interval is not measured by sensitivity.

7.6.3. Timeliness. Timeliness is calculated for a single simulated outbreak as:

T (h, i) = min
j

(j : A(h)ij = 1),

where there are mi intervals i and timeliness is not defined if
∑mi

j=1 A(h)ij = 0.

7.6.4. Detection Benefit. Detection benefit is the potential gain in time to detection
from using one detection method relative to another method. For one detection
method A and another method B, the benefit of A over B is calculated as the
difference in the timeliness using the two methods, or

DAB(h, i) = max(0, TB(h, i)− TA(h, i)).
The detection benefit is always greater than or equal to zero. If method B always

detects an outbreak, which is the case in the current study for clinical case-finding,
then the detection benefit is the difference in timeliness between the two methods
when method A detects an outbreak.

Another useful metric is the proportion of time saved [?], and an alarm saving
at least tsp of the proportion of time is defined as,

A(h, tsp) = A(h) • I(DAB ≤ tsp),
and the true positive rate is defined as

TP (h, tsp) =
N∑

n=1

An(h, tsp)
N

,
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where An(h, tsp) is an alarm for outbreak n at threshold h that saves at least
the proportion tsp of time and there are N outbreaks.
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